Oct 30, 2008

CO2 to fuels processes - II

Recently Carbon Sciences, featured in an earlier article on this blog revealed the source of hydrogen for their CO2 to fuels process.
"Dr. Naveed Aslam, inventor of the company's technology and chief technology advisor, commented: "Unlike other CO2 to fuel approaches, Carbon Sciences' technology does not use molecular hydrogen (H2) because the creation and reaction of H2 is very energy intensive. Rather, the company's approach is based on a low energy biocatalytic hydrolysis process where water molecules (H2O) are split into hydrogen atoms (H) and hydroxide ions (OH) using a biocatalyst. The hydrogen atoms (H) are immediately used in the production of hydrocarbons and the free electrons in OH are used to power the various biocatalytic processes." "Our technology is not based on photosynthetic plants where sun light is used to drive biofuel production reactions, such as in algae. Instead, it is based on natural organic chemistry processes that occur in all living organisms where carbon atoms, extracted from CO2, and hydrogen atoms extracted from H2O, are combined to create hydrocarbon molecules using biocatalysts and small amounts of energy. Our innovative technology allows this process to occur on a very large industrial scale through advance nano-engineering of the biocatalysts and highly efficient process design," concluded Dr. Aslam."
My opinions given below:

Read More...

Oct 22, 2008

PBS Frontline: Heat

Global Warming, can we roll it back?
Image courtesy of PBS.org

Oct 21, 2008

Analysis: Algae for carbon dioxide (CO2) capture

Summary
This post describes a simplified economic analysis of an algal biofuel technology that converts carbon dioxide (CO2) from cement plants into (potentially) useful algal oil. I examined various key factors such as CO2 offset price, price of algal oil, and productivity that affect the profitability of such a process.

Based on my analysis I conclude that the single most important factor that affects the economics of CO2 capture is the algal biomass yield (mass produced/unit area). Doubling the productivity (and the CO2 offset) per hectare decreases the payback time by 50 % (15 years to 7 years).

Disclaimer: This is not a critique of the specific algal biofuels process proposed. CO2 mitigation using algae is one of the answers to our grand energy challenges, and we must continue to address these issues.

Read More...

Oct 17, 2008

Synfuels (CTL, OTL, GTL, BTL, XTL) Round-Up

Given below is a compilation of the latest news, analyses and resources on synthetic fuels from hydrocarbons (coal-to-liquids, biomass-to-liquids, gas-to-liquids, oil sands-to-liquids)

Read More...

Oct 15, 2008

News: Cleaner technologies for coal at Penn State

Structural representation of a South African intertinite-rich Highveld coal. Carbon atoms are green, oxygen atoms are red, and sulfur atoms yellow. Courtesy of Daniel van Niekirk / Jonathan Mathews

Research at Penn State (RPS) recently did an extensive article on current clean-coal research at Penn State. Featured were the following:
  • Direct liquefaction of coal to produce jet fuels (JP-900).
  • Better molecular models for coal, CO2 sequestration in coal seams.
  • Understanding coal reactions using femtochemistry.
  • Adapting existing refineries for coal conversion.
  • Making more comprehensive use of coal, producing value-added compounds.
  • Molecular-basket adsorbents to capture CO2 from flue gas streams.

Oct 13, 2008

The tale of two synthetic fuels & Using champagne to make beer


[Composition (atom %) of bituminous coal, Athabasca oil sands and Mexico heavy crude oil] (Using the link to view the image requires a stand alone SVG viewer and your browser needs to be configured to use this player)


I provide a brief description of two processes to produce synthetic fuels, coal-to-liquids (CTL) processes and synthetic crude oil (SCO) from tar/oil sands. The economics behind SCO and CTL production are briefly discussed. One of the critical factors influencing lifecycle CO2 emissions from and economics of the CTL and SCO processes is the C/H ratio of the original fuel source (tar sands/coal). The findings of a recent RAND report (Unconventional Fossil-Based Fuels Economic and Environmental Trade-Offs) are discussed from this perspective.

Read More...

Penn State My 20 Challenge Week

From the Penn State newswire:

Penn State wants to know, 'What's your 20?'

Penn State is challenging its faculty, staff and students, to reduce electrical consumption by 2 percent during the My 20 Challenge Week of Oct. 19-25. The goal is to reduce the University's energy use by 20 percent and show Penn Staters how it's easy to be environmentally conscious.
Penn Staters are encouraged to find out their carbon footprint though a carbon footprint calculator found at http://www.my20.psu.edu online.
Read the full story on Live: http://live.psu.edu/story/35226/nw63

Read More...

Oct 10, 2008

Economic Value of Nature, Forests

A recent study by Deutsche Bank economist(s) [study leader: Pavan Sukdev] places an economic value on forests based on the benefits they provide like providing clean water and carbon dioxide (CO2) absorption. The EU-commissioned study puts the annual cost of forest loss at between $2 trillion and $5 trillion.

An interesting point of trivia here is that, "Pavan" in hindi/sanskrit refers to the "Wind God".
The study, headed by the Deutsche Bank economist, parallels the Stern Review into the economics of climate change.

Read More...

Oct 8, 2008

What effects will the current economic downturn have on carbon trading and GHG legislation?



Read More...

 
The Energy Webring